Covariance of complementary rRNA loop nucleotides does not necessarily represent functional pseudoknot formation in vivo.
نویسندگان
چکیده
We examined mutationally a two-hairpin structure (nucleotides 57 to 70 and 76 to 110) in a region of domain I of Escherichia coli 23S rRNA that has been implicated in specific functions in protein synthesis by other studies. On the basis of the observed covariance of several nucleotides in each loop in Bacteria, Archaea, and chloroplasts, the two hairpins have been proposed to form a pseudoknot. Here, appropriate loop changes were introduced in vitro by site-directed mutagenesis to eliminate any possibility of base pairing between the loops. The bacterial cells containing each cloned mutant rRNA operon were then examined for cell growth, termination codon readthrough, and assembly of the mutant rRNAs into functional ribosomes. The results show that, under the conditions examined, the two hairpins do not form a pseudoknot structure that is required for the functioning of the ribosome in vivo and therefore that sequence covariance does not necessarily indicate the formation of a functional pseudoknot.
منابع مشابه
Structural elements of rps0 mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15
Previous experiments showed that S15 inhibits its own translation by binding to its mRNA in a region overlapping the ribosome loading site. This binding was postulated to stabilize a pseudoknot structure that exists in equilibrium with two stem-loops and to trap the ribosome on its mRNA loading site in a transitory state. In this study, we investigated the effect of mutations in the translation...
متن کاملCleavage of a 23S rRNA pseudoknot by phenanthroline-Cu(II).
Studying the intricate folding of rRNA within the ribosome remains a complex problem. Phenanthroline-Cu(II) complexes cleave phosphodiester bonds in rRNA in specific regions, apparently especially where the rRNA structure is constrained in some fashion. We have introduced phenanthroline-copper complexes into 50S Escherichia coli ribosomal subunits and shown specific cleavages in the regions con...
متن کاملStructural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity.
The higher order structure of the functionally important 530 loop in Escherichia coli 16S rRNA was studied in mutants with single base changes at position 517, which significantly impair translational fidelity. The 530 loop has been proposed to interact with the EF-Tu-GTP-aatRNA ternary complex during decoding. The reactivity at G530, U531 and A532 to the chemical probes kethoxal, CMCT and DMS ...
متن کاملImportance of structural differences between complementary RNA molecules to control of replication of an IncB plasmid.
Replication of the IncB miniplasmid pMU720 is dependent on the expression of repA, the gene encoding replication initiator protein RepA. Binding of a small antisense RNA (RNAI) to its complementary target (stem-loop I [SLI]) in the RepA mRNA prevents the participation of SLI in the formation of a pseudoknot that is an enhancer of translation of this mRNA. Thus, RNAI regulates the frequency of r...
متن کاملThe role of the pseudoknot at the 3' end of turnip yellow mosaic virus RNA in minus-strand synthesis by the viral RNA-dependent RNA polymerase.
The tRNA-like structure at the 3' end of turnip yellow mosaic virus (TYMV) RNA was studied in order to determine the role of this structure in the initiation of minus-strand synthesis in vitro. Deletions in the 5'-to-3' direction up to the pseudoknot structure did not result in a decrease of transcription efficiency. However, transcription efficiency was reduced twofold when a fragment of 21 nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 20 شماره
صفحات -
تاریخ انتشار 2000